Conversational AI is a central sub-field of Natural Language Processing that makes it possible for a human to have a conversation with a machine. Everytime the human says or asks something to the AI, the whole conversation history is sent too, so the AI can have the context in memory and make relevant responses. Modern chabots leverage conversational AI and can do more than simply having a conversation. For example they can detect customer intents, search documents, understand the customer tone and adapt their own tone (anger, joy, sarcasm...).
LLaMA 3, Dolphin, ChatDolphin, Yi 34B, and Mixtral 8x7B are advanced alternatives to GPT-4 and ChatGPT, available on NLP Cloud. These models are so complex that they can adapt to many situations, and perfectly sound like a humans. For advanced use cases, it is possible to fine-tune these models (train them with your own data), which is a great way to get a chatbot that is perfectly tailored to your company/product/industry.
Generative models have no "memory". So you should help them by re-sending the conversation history in every request you're making. We actually wrote a dedicated blog article about how to build a chatbot with a generative model, feel free to read it!
If you want to build a chatbot that answers technical questions about your own domain knowledge, you will have to couple your chatbot with a semantic search / RAG model. Here is a guide about coupling RAG with generative AI.
More and more companies want to leverage chatbots, either to build an advanced product based on AI, or improve their internal productivity. Here are a couple of examples:
The most popular chatbot application is to automatically help customers without having to rely on a support person. It dramatically improves reactivity, and it alleviates the support team so they can focus on very advanced questions only. A good support chatbot is able to search documents for customers, answer contract or technical questions, detect customer tone and intent...
Some video games now include conversational AI capabilities, so players can naturally discuss with the machine. It makes modern games much more interactive, especially because modern conversational AIs can adapt their tone to the situation (anger, joy, sarcasm...).
It's sometimes hard for a user to find what he's looking for, especially if there are a lot of products or if the products are complex. In that case, building a chatbot to help customers and point them to the right product is a very good solution.
The healthcare industry leverages chatbots in order to discuss with patients and automatically make a diagnostic.
NLP Cloud proposes a chatbot and conversational AI API based on generative models that give you the opportunity to perform conversational AI out of the box, with breathtaking results. These models are Dolphin, ChatDolphin, Yi 34B, and Mixtral 8x7B. They are powerful alternatives to ChatGPT, GPT-3.5 and GPT-4 by OpenAI. If the pretrained models are not enough, you can also fine-tune/train your own generative models on NLP Cloud and automatically deploy the new models to production with only one click.
For more details, see our documentation about chatbots and conversational AI with generative models here. For advanced usage, see the text generation API endpoint here. And easily test chatbots and conversational AI on our playground.